Gröbner-Shirshov besis for a free inverse semigroup

نویسندگان

  • L. A. Bokut
  • Yuqun Chen
  • Xiangui Zhao
چکیده

A new construction of a free inverse semigroup was obtained by Poliakova and Schein in 2005. Based on their result, we find a Gröbner-Shirshov basis of a free inverse semigroup relative to the deg-lex order of words. In particular, we give the (unique and shortest) Gröbner-Shirshov normal forms in the classes of equivalent words of a free inverse semigroup together with the Gröbner-Shirshov algorithm to transform any word to its normal form.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gröbner-shirshov Basis for the Braid Semigroup

We found Gröbner-Shirshov basis for the braid semigroup B n+1. It gives a new algorithm for the solution of the word problem for the braid semigroup and so for the braid group.

متن کامل

GrÖbner-shirshov Bases for Free Inverse Semigroups

A new construction for free inverse semigroups was obtained by Poliakova and Schein in 2005. Based on their result, we find Gröbner-Shirshov bases for free inverse semigroups with respect to the deg-lex order of words. In particular, we give the (unique and shortest) normal forms in the classes of equivalent words of a free inverse semigroup together with the Gröbner-Shirshov algorithm to trans...

متن کامل

Growth of Finitely Presented Rees Quotients of Free Inverse Semigroups

We prove that a finitely presented Rees quotient of a free inverse semigroup has polynomial growth if and only if it has bounded height. This occurs if and only if the set of nonzero reduced words has bounded Shirshov height and all nonzero reduced but not cyclically reduced words are nilpotent. This occurs also if and only if the set of nonzero geodesic words have bounded Shirshov height. We a...

متن کامل

Gröbner-Shirshov Bases for Lie Algebras: after A. I. Shirshov

In this paper, we review Shirshov’s method for free Lie algebras invented by him in 1962 [17] which is now called the Gröbner-Shirshov bases theory.

متن کامل

Gröbner-Shirshov Bases for Associative Algebras with Multiple Operators and Free Rota-Baxter Algebras

In this paper, we establish the Composition-Diamond lemma for associative algebras with multiple linear operators. As applications, we obtain Gröbner-Shirshov bases of free Rota-Baxter algebra, λ-differential algebra and λ-differential Rota-Baxter algebra, respectively. In particular, linear bases of these three free algebras are respectively obtained, which are essentially the same or similar ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008